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Is Weather Chaotic?
Coexistence of Chaos and Order within a Generalized Lorenz Model
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ABSTRACT: Over 50 years since Lorenz’s 1963 study and a follow-up presentation in 1972, the 
statement “weather is chaotic” has been well accepted. Such a view turns our attention from 
regularity associated with Laplace’s view of determinism to irregularity associated with chaos. In 
contrast to single-type chaotic solutions, recent studies using a generalized Lorenz model (GLM) 
have focused on the coexistence of chaotic and regular solutions that appear within the same 
model using the same modeling configurations but different initial conditions. The results, with 
attractor coexistence, suggest that the entirety of weather possesses a dual nature of chaos and 
order with distinct predictability. In this study, based on the GLM, we illustrate the following two 
mechanisms that may enable or modulate two kinds of attractor coexistence and, thus, contribute 
to distinct predictability: 1) the aggregated negative feedback of small-scale convective processes 
that can produce stable nontrivial equilibrium points and, thus, enable the appearance of stable 
steady-state solutions and their coexistence with chaotic or nonlinear oscillatory solutions, referred 
to as the first and second kinds of attractor coexistence; and 2) the modulation of large-scale 
time-varying forcing (heating) that can determine (or modulate) the alternative appearance of 
two kinds of attractor coexistence. Based on our results, we then discuss new opportunities and 
challenges in predictability research with the aim of improving predictions at extended-range time 
scales, as well as subseasonal to seasonal time scales.
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Our current view of “weather is chaotic” is based on the pioneering modeling study of 
Prof. Lorenz (Lorenz 1963a), who presented the sensitive dependence of solutions on 
initial conditions (SDIC), also known as the butterfly effect (Lorenz 1993). The feature of 

SDIC suggests that an initial tiny perturbation will eventually lead to a different time evolution 
of the solution. The conventional view has had a profound impact in meteorology for decades, 
in particular in numerical weather and climate predictions. However, recent findings obtained 
by analyzing and comparing the original Lorenz models (Lorenz 1963a, 1969, 1972) and the 
generalized Lorenz model (GLM; Shen 2019a,b; Shen et al. 2019) challenge the validity of 
the statement “weather is chaotic” in representing the true nature of weather. In this study, 
we provide new insights and opportunities using the GLM in order to formalize a revised 
view that focuses on the dual nature of chaos and order in weather, an “intuitive idea” that 
many meteorologists may unconsciously have, and to present approaches for improving our 
understanding of predictability and weather prediction at extended-range and subseasonal 
to seasonal time scales (e.g., Shen et al. 2010; Shen 2019b).

To achieve our goal, we first review three types of solutions within the Lorenz 1963 model 
and two kinds of attractor coexistence within the GLM, including coexisting chaotic and 
regular solutions. We then replace a time-independent parameter by a time-dependent model 
parameter in order to present the alternative and concurrent appearance of various types of 
solutions, showing the complexities in weather and climate. To facilitate discussions, two 
kinds of predictability are defined as follows: 1) intrinsic predictability that is only dependent 
on flow itself and 2) practical predictability that is limited by imperfect initial conditions 
and/or (mathematical) formulas (Lorenz 1963b; Shen 2014). Table 1 lists the definitions of 
concepts related to predictability.

Analysis and discussion
The Lorenz 1963 model and three types of solutions. The model used in the Lorenz 1963 
study was derived from the governing equations of Rayleigh–Bénard convection with heating 
imposed on the bottom, and consists of three first-order ordinary differential equations (ODEs) 
for the three state variables that represent amplitudes for the Fourier modes of streamfunc-
tion and temperature. The state variables X, Y, and Z are referred to as primary scale modes 
to be distinguished from smaller-scale state variables that only appear within the GLM. To 
analyze a system of ODEs, state variables are often used as coordinates in order to construct the  
so-called phase space. The time evolution of a solution within the phase space is called an 
orbit or a trajectory. As a result of the three variables used as coordinates, the model is re-
ferred to as the three-dimensional Lorenz model (3DLM). In addition to the state variables, the 
3DLM contains three, time-independent parameters that represent the strength of heating and 
dissipation, and the scale ratio of the convective cell. The strength of heating is determined 
by the normalized Rayleigh parameter (also called a heating parameter, denoted as r) that 
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represents temperature differences between the top and bottom. Without a loss of generality, 
below, we discuss features of the 3DLM and GLM by only varying the heating parameter and 
keeping the remaining two parameters constant. The dependence of solutions on the other 
parameters can be found in Sparrow (1982).

As discussed in section 3.1 of Shen (2019b), each of the three types of solutions, 
including steady-state, chaotic, and nonlinear oscillatory solutions, may exclusively 
appear at small, medium, and large heating parameters, respectively (e.g., Sparrow 1982). 
The three types of solutions are also referred to as point, chaotic, and periodic attrac-
tors, respectively, and the latter is also known as a limit 
cycle solution (Shimizu 1979).1 Intrinsic predictability for 
chaotic solutions is limited but unlimited for nonchaotic 
orbits. Within chaotic solutions, the degree of finite predict-
ability varies, displaying a dependence on initial conditions 
(Slingo and Palmer 2011; Nese 1989; Zeng et al. 1993).

Missing features in the conventional view of “weather is chaotic.”  
By only applying chaotic solutions in order to define the nature 
of weather, an implicit assumption is that heating parameters 

Table 1. Definitions of concepts related to predictability in this study.

Name Definitions References

First kind of attractor coexistence Coexistence of chaotic and steady-state solutions Yorke and Yorke (1979), Shen (2019a)

Second kind of attractor coexistence Coexistence of nonlinear oscillatory and steady-state solutions Shen (2019a)

Attractor The smallest attracting point set that, itself, cannot be decomposed into  
two or more subsets with distinct basins of attraction

Sprott et al. (2013)

Autonomous A system of ODEs is autonomous if time does not appear explicitly within  
the equations

Jordan and Smith (2007)

Basin of attraction As time advances, orbits initialized within a basin tend asymptotically to  
the attractor lying within the basin

Thompson and Stewart (2002)

Chaos Orbits exhibit sensitive dependence on ICs Lorenz (1993)

Computational chaos Appearing “when the exact solution varies periodically with time, there 
is sometimes a range of time increment where the computed solution is 
chaotic”

Lorenz (2006)

Final state sensitivity Nearby orbits settle to one of multiple attractors for a finite but arbitrarily 
long time

Grebogi et al. (1983)

Intransitivity A specific type of solution lasts forever Lorenz (1990)

Intrinsic predictability Predictability that is only dependent on the flow itself Lorenz (1963b)

Shen (2014)

Limit cycle Nonlinear oscillatory solution; an isolated closed orbit Jordan and Smith (2007)

Nonautonomous Variable time (τ) appears on the right-hand side of the equations Jordan and Smith (2007)

Phase space Within a system of the first-order ODEs, a phase space or state space  
can be constructed using time-dependent variables as coordinates

Hilborn (2000)

Practical predictability Predictability that is limited by imperfect initial conditions and/or  
(mathematical) formulas

Lorenz (1963b)

Shen (2014)

Recurrence Defined when a trajectory returns back to the neighborhood of a previously 
visited state; recurrence may be viewed as a generalization of “periodicity” 
that includes quasi periodicity with multiple frequencies and chaos

Thompson and Stewart (2002)

Riddled basins Basins with fractal boundaries in which every point in one basin of 
attraction is arbitrarily close to a point in the other basin

Alexander et al. (1992)

Sensitive dependence The property characterizing an orbit if most other orbits that pass close to 
it at some point do not remain close to it as time advances

Lorenz (1993)

1	Studies by Pedlosky (1972) and Smith and  
Reilly (1977) found that a limit cycle solution 
can be applied in order to understand  
amplitude vacillation, whose amplitude grows 
and periodically decays in a regular cycle  
(Lorenz 1963c; Ghil et al. 2010). Oscillatory solutions 
can be found in simplified or high-order, Lorenz-
type models (e.g., Park et al. 2016; Moon et al. 2017, 
2019, 2020; Faghih-Naini and Shen 2018; 
Shen 2018, 2019a, 2020, 2021).
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must always stay within the specific interval of positive values. A consequence is that an initial 
tiny perturbation will always lead to a significant change in the time evolution of solutions 
(i.e., SDIC). However, neither the assumption nor the consequence has been verified against 
observations. Below, we first illustrate the impact of time-varying heating parameters on the 
appearance of chaotic solutions and then discuss the insensitivity of nonchaotic solutions 
to initial conditions.

Modulation of solutions by a time-varying heating function. Table 2 lists a periodic heating 
function with a time period of 2πT and two coefficients2 (e.g., Franz and Zhang 1995), and 
the initial conditions for experiments using the 3DLM and GLM. The integration interval of 
dimensionless time τ is between 0 and 5πT (i.e., τ ∈ [0, 5πT]). For the selected periodic heating 
function, r ∈ [10, 350], we compare a control run to two parallel 
runs that add initial tiny perturbations of ε = 10−8 and ε = −10−8, 
respectively. As shown in Figs. 1a and 1b, the alternative appear-
ance of three types of solutions is modulated by periodic heating. 
Zoomed-in views in Figs. 1c–e show 1) a SDIC as indicated by the 
divergences of initial nearby trajectories for a heating parameter 
larger than 24.74 (e.g., τ ∈ [28, 30]), 2) chaotic solutions for 
τ ∈ [30.5, 32.5], and 3) regular oscillatory solutions at large heat-
ing parameters for τ ∈ [40, 42]. These possess oscillatory features 
of limit cycle solutions that are defined using a constant heating 
parameter. As defined in Table 1, oscillatory features associated 
with a time-varying parameter may be referred to as recurrence. 
4) Figure 1a additionally displays a transition from a stable steady-state solution, to an un-
stable steady-state solution, and then to a chaotic solution for τ ∈ [23, 30] (or τ ∈ [55, 62]). 
Such a transition indicates an effective, but not necessarily realistic, growth of disturbance 
as a result of the nonexistence of stable equilibrium points for r > 24.74 (Lorenz 1963a). After 
being chaotic, associated with time-varying heating, all three trajectories become regularly 
oscillatory again, as shown in Fig. 1f for τ ∈ [72, 74]. 5) The appearance of a chaotic epoch 
with SDIC is modulated by periodic heating (i.e., the forcing) and SDIC may not be well-defined 
within the epoch of nonlinear oscillatory solutions, during which the differences of two initial 
nearby trajectories regularly vary.

As documented in existing studies, initial small errors do not have a long-term impact 
on nonchaotic solutions, such as steady-state and oscillatory solutions (except for phases), 
consistent with our daily experiences. However, the exclusive appearance of single attractors 
suggests that initial tiny errors either have no impact or a large impact. Below, to provide a 
more realistic description of weather, we present a model that possesses the coexistence of 
chaotic and nonchaotic solutions.

Table 2. Model settings for numerical experiments within the 3DLM and GLM. The time-varying 
heating function is written as r(τ) = ro + r1 sin(τ /T). Here, τ represents nondimensional time and T is 
the time period of the heating function. The values of ro and r1 are selected in order to determine 
the specific range of values for the heating parameter.

3DLM GLM with 9 modes

Coefficients and period for the heating function (ro, r1, T) = (180, 170,5) (ro, r1, T) = (1,200, 520,5)

Initial conditions (X, Y, Z) = (0, 1 + ε, 0) (X, Y, Z) = (0, 1 + ε, 0)

ε = 0, 10−8, or −10−8 The rest of state variables are set to 0

ε = 0, 10−8, or −10−8

2	As defined in Table 1, the system becomes 
nonautonomous (e.g., Lucarini 2019) since a 
time-varying parameter is considered. However, 
mathematically, such a system can be converted 
into an autonomous system as follows: we intro-
duce a new state variable, p, in order to replace 
τ/T, yielding r(τ) = r0 + r1sin(p) and dp/dτ = 1/T. 
Then, the new system that consists of the 3DLM 
and an additional ODE for the new state vari-
able p is autonomous. In this study, a change in  
(r0, r1, T) does not change our conclusion.
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The generalized Lorenz model and two kinds of attractor coexistence. Attractor coexis-
tence within conservative Hamiltonian systems has been documented for several decades 
(Hilborn 2000). Within dissipative systems, the coexistence of chaotic and nonchaotic solu-
tions has also been discussed in some fields for more 
than two decades (e.g., Sprott et al. 2005). However, 
in meteorology,3 related research activities using 
high-order, Lorenz-type systems still remain active. 
Below, we apply the GLM in order to discuss how 
coexisting attractors may better reveal the nature 
of weather.4

The GLM that allows any odd number of Fourier 
modes was derived based on the physical improve-
ment of nonlinear temperature advection that is asso-
ciated with mathematical extension of the nonlinear 
feedback loop within the 3DLM. A brief description 
of the GLM is provided in the online supplemental 
material (https://doi.org/10.1175/BAMS-D-19-0165.2). As 
shown in Fig. 1 of Shen (2019a), a comparison of the 

Fig. 1. The alternative appearance of three types of solutions modulated by the periodic heating func-
tion, r = r0 + r1 sin(τ /T), within the 3DLM. The green line represents the solution of the control run, while 
blue and red lines display solutions obtained from parallel runs that include an initial tiny perturbation, 
ε = 10−8 and ε = −10−8, respectively. An orange line shows the heating function. (a),(b) The three orbits 
and the heating parameters for τ ∈∈ [0,5πT ]. (a) A pair of dashed vertical lines indicates the time interval 
used in (c)–(e). (c) τ ∈∈ [28, 30] reveals a transition to diverged trajectories, displaying sensitive depen-
dence on initial conditions. After a transition from stable to unstable steady-state solutions, chaotic 
solutions appear, as shown in (d) for τ ∈∈ [30.5, 32.5]. (e) τ ∈∈ [40, 42] displays nonlinear oscillatory solu-
tions that are comparable to limit cycle solutions typically defined at large, time-independent heating 
parameters. After being chaotic and steady associated with time-varying heating, all three trajectories 
become regularly oscillatory again [e.g., for τ ∈∈ [72, 74] in (f)].

3	The 3DLM also possesses attractor coexistence (Yorke and  
Yorke 1979; Shen et al. 2021). However, such a feature has 
been overlooked, partly because it appears as a very limited 
set of solutions within a very small interval of the heating 
parameter. By comparison, Lucarini and Bodai applied a mul-
tistable system with coexisting attractors in order to reveal the 
bistability of the climate system (e.g., Garashchuk et al. 2019; 
Lucarini and Bodai 2019).

4	Coexisting solutions at two time scales are not necessar-
ily the same as coexisting chaotic and nonchaotic attrac-
tors. For example, coexisting slow and fast manifolds in 
Lorenz (1986) are nonchaotic. Coexisting slow and fast vari-
ables within coupled systems (e.g., Peña and Kalnay 2004; 
Mitchell and Gottwald 2012) are chaotic. Lorenz (1990) applied 
his 1984 model (Lorenz 1984) for illustrating the coexistence 
of two oscillatory solutions.
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GLM using three, five, seven, and nine modes revealed a continuously improved representa-
tion of temperature associated with additional smaller-scale modes.

Mathematically, our selection of new Fourier modes extends the nonlinear feedback loop 
and introduces new nonlinear coupling terms and new ODEs. As a result of nonlinear coupling 
terms that couple existing and new ODEs, a hierarchical scale dependence can be found within 
a high-dimensional LM (Shen 2016). Additionally, negative feedback by small-scale processes 
can be aggregated in order to provide a stronger effective dissipation for stabilizing solutions 
in higher dimensional Lorenz models. Thus, the GLM with a 
larger number of modes requires a larger heating parameter for 
the onset of chaos (Shen 2019a; Shen et al. 2019), yielding better 
predictability.5 Other than the above, the aggregated negative 
feedback enables the appearance of stable equilibrium points 
within the GLM with nine or more modes, leading to two kinds 
of attractor coexistence.

For example, as discussed in Shen (2019a), the first kind of 
attractor coexistence that consists of steady-state and chaotic 
solutions appears at a “moderate” heating parameter (e.g., 
r = 680). At a large heating parameter (e.g., r = 1,600), Shen (2019a)  
illustrated the second kind of attractor coexistence that con-
tains steady-state and limit cycle solutions. As shown in Fig. 2, 
ensemble runs with 128 members reveal how chaotic and nonchaotic solutions with distinct 
intrinsic predictability appear within different portions of the X–Y phase space (see details in 
Shen et al. 2019). Within chaotic solutions, the degree of finite predictability varies, as sug-
gested in Fig. 1 of Slingo and Palmer (2011). Other than the above, the coexistence of two 
periodic solutions with different periods has also been documented (e.g., Fig. 8 of Shen 2019a).

A revised view with the alternative and concurrent appearance of various types of solutions.  
To better reveal the complexities of weather and climate, we discuss the alternative and concurrent 
appearance of various types of solutions associated with the time-varying heating function in 
Table 2, yielding r ∈ [680, 
1,720]. Figures 3a and 3b 
display three trajectories 
and the heating function 
for τ ∈ [0, 5πT]. Figures 3c–e 
sequentially reveal three 
chaotic orbits, the first 
kind of attractor coexis-
tence, and the second kind 
of attractor coexistence, 
respectively. The results 
are consistent with those 
in Shen (2019a) that kept 
the heating parameter as 
a constant during numeri-
cal integration. Figure 3f 
displays the “coherent” 
variation of the nearly 
steady-state solution and 
the heating function for τ 
∈ [30, 78].

5	This is a unique feature of the GLM. In general, 
within a nonlinear PDE system, simply add-
ing more Fourier modes does not necessarily 
produce a higher-dimensional system of ODEs 
that improves predictability as compared to 
a lower-dimensional system. As discussed on 
pages 8–10 of the supplemental materials for 
Shen (2016; https://npg.copernicus.org/preprints/2/

C466/2015/npgd-2-C466-2015.pdf), our GLM can use 
fewer Fourier modes in order to produce a model 
with better predictability, as compared to other 
Lorenz-type models.

Fig. 2. The first kind of attractor coexistence within the generalized Lorenz 
model. There are 128 orbits in different colors, beginning with different initial 
conditions (ICs) for τ ∈∈ [0.625, 5] with r = 680. Chaotic orbits recurrently return 
close to the saddle point at the origin. Nonchaotic orbits eventually approach 
one of two stable critical points, as shown with large blue dots. Chaotic and 
nonchaotic orbits occupy different regions of attraction within the phase space.
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Additional new insights from Fig. 3 include the following: 1) The first appearance of 
attractor coexistence with two different attractors, originally from nearby trajectories, 
indicates the so-called final state sensitivity (Grebogi et al. 1983) (i.e., whether or not the 
“final state” is a chaotic or steady state solution depends on initial conditions). 2) Although 
the two trajectories become chaotic with SDIC after τ > 21.25, they become oscillatory 
solutions with very comparable amplitudes and frequencies after a long time integration, 
τ ∈ [40, 42]. As a result, SDIC is not well defined during the epoch of the second kind of 
attractor coexistence since, in particular, ICs for weather can be continuously obtained. 
3) Figure 3f indicates that once a “steady state” solution ap-
pears (when it reaches an equilibrium state with zero local 
time changes for all state variables), it remains “steady” and 
varies with the time-dependent heating function.6 Such a fea-
ture cannot be found within the 3DLM because its nontrivial 
equilibrium points are not stable for r > 24.74. As a result, the 
appearance of stable equilibrium within the GLM effectively 
inhibits chaotic growth for some initial tiny perturbation, 
indicating the role of aggregated negative feedback. 4) Three 
major time scales for oscillatory or chaotic components can be 
identified: a large temporal scale (i.e., at the time scale of the 

Fig. 3. The alternative and concurrent appearance of various types of solutions modulated by the periodic 
heating function, r = r0 + r1 sin(τ /T), within the GLM. The color scheme and layout are as in Fig. 1. (a),(b) 
The three orbits of the control and parallel runs and the heating function. For parallel runs, the initial 
tiny perturbations are ε = 10−8 and ε = −10−8, respectively. (c) τ ∈∈ [20, 22] reveals chaotic solutions. (d) The 
first kind of attractor coexistence, consisting of chaotic solutions and a steady-state solution, is shown 
for τ ∈∈ [28, 30]. (e) τ ∈∈ [40, 42] displays the second kind of attractor coexistence, including nonlinear 
oscillatory solutions and steady-state solutions. Interestingly, two orbits that appear chaotic at earlier 
times become regularly oscillatory with comparable amplitudes and phases. (f) A nearly steady-state 
solution (−Y/2) and the heating function r (τ) /20 for τ ∈∈ [30, 78], showing a unique feature of the GLM 
as compared to the 3DLM.

6	Within both the 3DLM and GLM, as well as 
in other autonomous dissipative systems, the 
existence of a nontrivial equilibrium point sug-
gests that corresponding steady-state solutions 
remain at a nonzero constant (i.e., they will not 
completely dissipate). On the other hand, since 
the stable steady-state solution of the 9DLM 
remains nearly “stationary” when heating 
parameters smoothly increase, such a stable 
solution may effectively dissipate as a result of 
the inclusion of other dissipative processes.
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heating function) in the slowly varying, stable steady-state solutions (e.g., Fig. 3f), as well 
as the “envelope” of entire solutions (e.g., Fig. 3a), medium temporal scales for nonlinear 
oscillatory solutions (e.g., Fig. 3e), and small temporal scales within transient oscillatory 
components of steady-state solutions and chaotic solutions. 5) The alternative and concur-
rent appearance of various types of solutions indicate the complexities of weather and climate 
that possess both chaotic and regular processes.

Conclusions and outlook
In this study, in contrast to the conventional view of “weather is chaotic,” we suggest a re-
fined view that the entirety of weather possesses both chaos and order. Such a revised view 
is fundamentally different from the Laplacian view of deterministic predictability and the 
Lorenz view of deterministic chaos. The refined view that turns our attention to coexisting 
multiple attractors from single attractors suggests both potential and challenges for improving 
our understanding of predictability and prediction for weather, as well as climate, as sum-
marized below.

Within the GLM, two major physical processes that determine the alternative and/or con-
current appearance of various types of solutions and their distinct predictability are

1)	 the aggregated negative feedback of small-scale processes, indicating the potential role of 
improved accuracy (via an increase of vertical resolution or improved physical processes) 
in stabilizing the system;

2)	 modulation through a slowly varying heating function that may represent either temporal 
or spatial variations of “forcing” (e.g., radiation), yielding different predictability over 
different time periods or regions.

From a modeling perspective, this slowly varying forcing may be analogous to internal 
forcings such as large-scale waves that provide the determinism of tropical cyclone ac-
tivities or external forcings such as slow processes that come from ocean or land model 
components.

In addition to determinism by large-scale forcing, predictability among various types of 
solutions displays a dependence on 1) initial conditions (e.g., via SDIC or the final state sen-
sitivity), 2) model parameters (e.g., leading to chaotic and/or nonchaotic solutions), and 3) 
number of modes (e.g., yielding single attractors or multiple coexisting attractors). Chaotic 
processes display a sensitivity to initial conditions and possess finite intrinsic predictability. 
However, finite (practical) predictability within a real-world model may appear as a result of 
different mechanisms, including linear instability and/or computational chaos (Lorenz 1989; 
also see Table 1). For nonchaotic, steady-state or nonlinear oscillatory solutions, their intrin-
sic predictability is deterministic (e.g., up to the lifetime of a dissipative solution or the time 
interval of the epoch for oscillatory solutions) and, thus, their practical predictability may be 
continuously increased by improving the accuracy of the model and the initial conditions.

A limit of (practical) predictability of 2 weeks that has been proposed for decades was re-
cently suggested for weather systems in the midlatitudes (Zhang et al. 2019). By comparison, 
our results suggest that better predictability for regular systems may locally appear in space 
and time (e.g., at extended-time or subseasonal to seasonal time scales) (e.g., Shen 2019b; 
Judt 2020), as illustrated below:

•	 A 10-yr, multiscale analysis of hurricanes and African easterly waves (AEWs; Wu and 
Shen 2016) indicated a near-constant annual number of AEWs, with the number shifting 
between 26 and 30 for 9 of the 10 study years during the July–September period. Such a 
feature seems to suggest “stable” large-scale forcing that may appear as a result of heating 
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over the African continent that contributes to a strong baroclinic zone along the boundary 
in the Sahel of central and eastern Africa.

•	 Based on the dynamics of limit cycle solutions, Shen (2019b) hypothesized that a bal-
ance between strong heating and nonlinearity7 may lead to the “recurrence” of multiple  
AEWs.

•	 Although it may be challenging to predict the onset of an epoch for nonlinear oscillatory 
solutions, as shown in Fig. 3, better predictability is expected within such an epoch. The 
lead author and his coauthors (e.g., Shen et al. 2010; Shen 2019b) presented realistic 30-day 
simulations for the recurrence of multiple AEWs and the formation, movement, and inten-
sification of Hurricane Helene (2006) between day 22 and 
30. Such results were verified in a modeling sensitivity study 
with changes in dynamics and physical initial conditions.

To understand, verify, and improve the model’s performance in 
predictions, additional suggestions and/or important concepts 
are provided below:

•	 Since SDIC does not always appear, initial tiny perturbations 
do not always contaminate numerical simulations.

•	 The presence of oscillatory (or saturated) root-mean-square 
average forecast errors for ensemble runs can help check 
whether oscillatory (or chaotic) solutions dominate over the 
target regions or periods (Liu et al. 2009). A focus on oscil-
latory types of solutions using models and observations 
may be effective for understanding intrinsic predictability 
at extended-range time scales and subseasonal to seasonal 
scales. However, depending on the periods of oscillatory 
systems, oscillatory features may not be detectable in short-
term (~5–7-day) predictions or may appear in the form of 
computational chaos. An improved error growth model that 
can reveal saturated or oscillatory errors is required.

•	 As a result of final state sensitivity, it is important, but 
challenging, to detect the boundary between the basins of 
attraction for different attractors, in particular for a given 
initial condition that is close to a fractal boundary of a so-called riddled basin (e.g., 
Alexander et al. 1992; Cazelles 2001; also see Table 1). A systematic analysis of “outliers” 
among different ensemble runs may provide insights on the existence of multiple stability.

•	 Additionally, by taking intransitivity into consideration (Lorenz 1990; Pielke and Zeng 1994; 
also see Table 1), a different level of challenge in long-term prediction appears when tran-
sitivity occurs.

•	 In contrast to regular forcing, large-scale irregular forcing [e.g., El Niño that was shown to 
be “chaotic” by Guckenheimer et al. (2017)] could also modulate small-scale processes, in-
creasing uncertainties in predictions. By comparison, small-scale processes may introduce 
additional heating in order to destabilize the system (e.g., Shen 2015, 2017). As such, identi-
fying forcing terms and understanding their trends (e.g., growing or decaying) are important 
for better understanding their collective impact with nonlinearity on model simulations.

•	 To verify the refined view (that contains attractor coexistence, SDIC, final state sensitiv-
ity, and intransitivity) using numerical weather prediction models or observations, new 
analysis methods [e.g., for classifying basins of attraction (Sprott and Xiong 2015) and for 
revealing and detecting recurrence (Reyes and Shen 2019)] are required.

7	Pedlosky and Frenzen (1980) discussed 
chaotic and nonchaotic solutions using a 
quasigeostrophic model that is mathemati-
cally identical to the 3DLM and suggested 
that the features of the 3DLM are directly ap-
plicable to the model of a weakly nonlinear 
baroclinic wave (also see Pedlosky 2019). 
Limit cycle solutions have been applied for 
studying the dynamics of quasi-biennial 
oscillation (e.g., Renaud et al. 2019) and vortex 
shedding (e.g., Noack and Eckelmann 1994; 
Ramesh et al. 2015). In comparison, by revealing 
multiple, stable, steady-state solutions in a low-
order (six-dimensional) model based on a quasi-
geostrophic system, Charney and DeVore (1979) 
suggested that atmospheric blocking, with 
resultant longer predictability, may appear 
in the form of a stable steady-state solution, 
due to a balance of nonlinearity, thermal 
forcing, Ekman damping, and topography (e.g., 
Crommelin et al. 2004; Chen and Xiong 2016). 
Such a feature indicates the importance of 
(mechanic) topographic forcing. This study 
focuses on the collective impact of nonlinearity 
and time-varying heating, as well as dissipation 
on oscillatory features.
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•	 To overcome barriers that are holding back further advancement in predictability research, 
it is important to assess the ability of model ensemble predictions in bracketing and dif-
ferentiating types of uncertainties in the context of intrinsic predictability that is only 
dependent on the flow itself, and practical predictability that is limited by imperfect initial 
conditions and/or (mathematical) formulas.
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